Skip to main content
It looks like you're using Internet Explorer 11 or older. This website works best with modern browsers such as the latest versions of Chrome, Firefox, Safari, and Edge. If you continue with this browser, you may see unexpected results.

Research Data Management

When you are doing research, good data management practices and transparency are essential. This toolbox provides practical information and guidelines for both PhD students and researchers when working with research data.

Codebooks

A codebook is a technical description of the data that were collected for a particular purpose in one or more datasets. It describes how the data are arranged in the computer file or files and what the parts or variables (numbers and letters) mean. A good description may also include specific instructions on how to use & interpret the data properly.

Like any other kind of "book," some codebooks are better than others. The best codebooks include the following elements:

  • Description of the study: who did it, why they did it, how they did it
  • Sampling information: what was the population studied, how was the sample drawn, what was the response rate
  • Technical information about the files themselves: number of observations, record length, number of records per observation, etc.
  • Structure of the data within the file: hierarchical, multiple cards, etc.
  • Details about the data: the meaning of the variables, whether they are character or numeric, and if numeric, what format
  • Text of the questions and responses: some even include how many people responded a particular way.

Examples of code books are